Enhanced Photocatalytic Remediation Using Graphene (G)-Titanium Oxide (TiO2) Nanocomposite Material in Visible Light Radiation

نویسندگان

  • Srikanth Gunti
  • Michael McCrory
  • Ashok Kumar
  • Manoj K. Ram
چکیده

The petroleum compounds were photocatalytically remediated from water using graphene (G)titanium oxide (TiO2) nanocomposite material in visible light radiation. The G-TiO2 nanocomposite was synthesized using sol-gel technique, and its structural & morphological properties were studied using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), particle analyzer and UV-Visible spectroscopy (UV-Vis) measurement techniques. Various petroleum-based chemicals (toluene, naphthalene and diesel) were remediated, and samples were analyzed using optical and gas chromatography (GC) techniques. The mechanism of photocatalytic remediation of petroleum compounds using G-TiO2 nanomaterials is understood and well compared with data available in literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sol-Gel-Assisted Microwave-Derived Synthesis of Anatase Ag/TiO2/GO Nanohybrids toward Efficient Visible Light Phenol Degradation

A simple microwave-assisted (MWI) wet chemical route to synthesize pure anatase phase titanium dioxide (TiO2) nanoparticles (NPs) is reported here using titanium tetrachloride (TiCl4) as starting material. The as-prepared TiO2 NPs were characterized by electron microscopy, X-ray diffraction, UV/visible absorption spectroscopy, and infrared and Raman spectroscopic techniques. Further modificatio...

متن کامل

Nanotitania composite assembled with Graphene oxide for Photocatalytic degradation of Eosin Yellow under Visible light

Visible light responsive Graphene oxide (GO) nanotitania composite was synthesized and its photocatalytic activity was investigated for the degradation of Eosin Yellow (EY). The nanocomposite was synthesized by organic solvent free-controlled hydrolysis of titanium tetrachloride (TiCl4) exfoliated with 10 wt. % (0.5 g) of the as prepared GO particles under ultrasonication through in-situ additi...

متن کامل

Reduced Graphene Oxide-TiO2 Nanocomposite Facilitated Visible Light Photodegradation of Gaseous Toluene

The photocatalytic degradation of gaseous toluene was investigated on TiO2 nanoparticles coated on reduced graphene oxide. Reduced graphene oxideTiO2 composite (RGO-TiO2) was synthesized via two step processes. The prepared RGO-TiO2 composite was characterized using SEM, XRD, and UV-visible spectra. A significant increase in light absorption to visible light was observed by RGO-TiO2 compared wi...

متن کامل

A comparative study of reduced graphene oxide modified TiO2, ZnO and Ta2O5 in visible light photocatalytic/photochemical oxidation of methylene blue

Reduced graphene oxide (rGO) was applied to prepare various composites of rGO/photocatalyst of G/TiO2, G/ZnO and G/Ta2O5, using titanium (IV) isopropoxide, Zn powder and commercial Ta2O5 powder as photocatalyst precursors, respectively. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric-differential t...

متن کامل

Graphene oxide supported titanium dioxide & ferroferric oxide hybrid, a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation

A facile, robust approach to the synthesis of Fe3O4/rGO/TiO2 nanocomposites is described. The synthesis involves two major steps: (1) preparation of Fe3O4/GO by an electrostatic self-assembly method; (2) deposition of TiO2 on the surface of the Fe3O4/rGO nanocomposite via a hydrothermal method. The asprepared Fe3O4/rGO/TiO2 photocatalyst exhibited an enhanced photocatalytic activity for the deg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016